
 
Abstract — This paper presents training procedure for our 

continuous speech recognition system in Serbian, based on 
hidden Markov models. In this paper, we focus on solutions of 
the problem of insufficient training data, and improvements 
obtained by maximum likelihood train algorithm.  

Keywords — Automatic speech recognition, hidden Markov 
models, maximum likelihood train algorithm and tying pro-
cedure. 

I. INTRODUCTION

HE automatic recognition system presented in this 
paper is speaker independent and proposed for tele-

phone quality speech. It uses hidden Markov models 
(HMM) to represent phonemes. Phoneme characteristics 
depend on nearby phonemes, so usually modeling unit is 
context dependent phoneme, triphone. One of the main 
problems for this kind of system is to obtain sufficient 
training data. We propose solution based on phonetic simi-
larity between phones, so called tying procedure. 
    Phoneme bounds are set by experts, so we have not had 
a need for complicated algorithms, which combat with the 
problems of roughly set phoneme bounds. Our early ex-
periments with HTK tools proved this statement [1]. Our 
training procedure is based on K-means and Maximum 
Likelihood (ML) train algorithm.  

The rest of the paper is organized as follows. In section 
II, a description of used corpus and features is presented. 
After that in section III, HMM modeling on phonetic level 
is described. One solution for obtaining sufficient observa-
tions per state is provided in section IV. General view on 
our training procedure is presented in section V. Experi-
mental results for several variations in ML train procedure 
are provided in section VI, followed by conclusions in 
section VII. 
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II. DATABASE AND FEATURES

The used corpus is a part of the SpeechDat database [2], 
containing only utterances spoken by male speakers.
SpeechDat contains sentences, isolated words, digits, 
phrases, dates etc. spoken in Serbian. This corpora was 
recorded through telephone lines and sampled at 8 kHz 
with 8-bit A-law quantization. The training set contains 
17752 utterances. The test set contains 620 utterances with 
981 words. The training and test sets are disjunctive. 

Speech signal is represented by cepstral coefficients, 
normalized energy, log energy and their first and second 
derivates. Features vector is divided into two streams. First 
stream contains 6 energy coefficients and second stream 
contains 36 spectral envelope coefficients. 

III. MODELS

Basic modeling unit is a context dependent phoneme 
and/or subphoneme, called triphon. Besides standard pho-
nemes with transcription in Serbian language, we use pho-
neme which corresponds to English phoneme / /, in our 
transcription 'Y'. Affricates and stops consist of two dis-
tinctive parts, closure (denoted by suffix 'o') and explosion 
(denoted by suffix 'e'), which are separately modeled. They 
are so called subphonemes. Set of Serbian vowels is ex-
tended to 10, making difference between stressed (denoted 
by suffix 's') and unstressed vowels. Silence and non-
speech sounds, which are in the corpus, are modeled too. 
They are context independent. 

Number of states per model is proportional to phoneme 
duration. All triphones, which represent the same phoneme 
in different context, have the same number of states. Num-
ber of mixtures per state depends on observations constel-
lation in features space and is determined dynamically. 
During initial training maximum number of mixtures and 
minimum number of observations per mixture are speci-
fied. 

Using triphones instead monophones leads to a very 
large set of models and relatively little training data for 
each triphone. All state distributions would be robustly 
estimated, if each state obtained enough observations. That 
could be achieved in two ways, first to extend training cor-
pus, and second, to use additional observations of acousti-
cally similar states during estimation of states with insuffi-
cient observations. Our choice is second solution. It is 
cheaper, but generates some suboptimal models (they are 
not so robust as in the case of having enough training 
data). 
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IV. TYING PROCEDURE

Tying procedure is realized on state level. How the 
states will be tied depends on which context is more im-
portant (left or right). For the first state and for all the 
states which are closer to the first than to the last state, 
more important context is left context, and for the last, 
central (if it exists) and all the states which are closer to the 
last then to the first state, more important context is right. 
More important context means that it stays permanent dur-
ing searching for similar triphone. For example, take 
triphone S-A+M (phoneme A with left context S and right 
M) and suppose that it has not enough instances for train-
ing and phoneme A has 3 states. Its first state can be tied 
with only first state of phoneme A with left context S, and 
its central and last state with central and last state of pho-
neme A with right context M respectively. This principle is 
based on the fact that previous (left) phoneme have more 
influence on the leading states of the model, and succes-
sive (right) phoneme on ending states. 
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Fig. 1. Levels of similarity. Each set represent one similarity level. 

Definition of phoneme similarity is based on our linguis-
tic knowledge about their place and manner of articulation. 
Fig. 1 illustrates similarity levels. Each set represents one 
similarity level. If set includes several sets or sets contain-
ing several subsets, level of similarity is weaker. Level of 
similarity means that error, which is made during tying 
procedure, is smaller if observations of triphones, created 
using phonemes on lower level, are used. 

Fig. 2 illustrates main idea of tying procedure. States of 
triphones with enough instances are estimated only on their 
observations, but their observations could be used during 
estimation of states with insufficient instances. For one 
triphone state, procedure starts on the lowest level and 
ends when the state gets sufficient instances for robust es-
timation or when all contexts are considered. It is impor-
tant to note that obligatory context never changes even if 

after considering all possible phonemes as unnecessary 
context are not sufficient instances for training. Act of ty-
ing means creating information, which instances from the 
corpus will be used during estimation procedure for that 
state. 

Fig. 2. Flowchart of tying procedure 

V. TRAINING PROCEDURE

Training starts with tying procedure. After obtaining 
sufficient number of observations per state, K-means algo-
rithm is used for initial estimation of model parameters. 
Input parameters for K-means algorithm are observations, 
minimum number of observations per mixture, and maxi-
mum number of mixtures per phoneme state. K-means al-
gorithm finds optimal number of mixtures for each 
triphone state, by gradually increasing number of mixtures 
until average metric rise or maximum number of states is 
reached. To obtain robust models, we use ML train after 
K-means algorithm. ML train is last stage in our training 
procedure.  

A. ML train algorithm 

ML train algorithm expects good initial models and a 
sufficient data per state for robust estimation. Each state is 
described by weighted sum of Gaussian distributions: 
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where: jmc is weight of mixture m of state j, 

),,( jmjmoN σμ  Gaussian distribution with mean 

value jmμ and variance jmσ . 

Every training sequence is segmented using a Viterbi 
alignment procedure. From that point, each state with as-
sociated observations is treated independently. 
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First, calculate probability that observation on belongs to 
mixture m of state j as: 
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This probability is used for re-estimation of mixtures 
weights, means and variances as: 
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Advantage of ML train algorithm over K-means algo-
rithm, lies on soft distribution of observations per mixture 
in states. Each observation affects on all mixtures in the 
state, so distribution coverage of observations space is 
better.  Detailed description of ML train algorithm can be 
found in [3]. 

VI. EXPERIMENTS

We implemented several modifications of ML train al-
gorithm. First modification is removing outliers.  Outlier is 
observation, which does not belong to any mixture. There-
fore, outlier has small value of probability to belong to any 
mixture in the state i.e. ),,( jmjmnjm oNc σμ . 

Fig. 4.  presents WER of models, which are generated 
by ML train algorithm. WER of models, generated by K-
means algorithm is 22.73%, is our referent point. Increas-
ing of WER for small values of threshold comes from in-
correct computation of models parameters. Outlier small 
logarithm probability for some mixtures stays unchanged 
(value is small but bigger then threshold) and became 
dominant in estimation, but for other mixtures it is elimi-
nated. Presented results are obtained after only one ML 
train iteration.  

Our first goal was to find value of probability threshold 
for outlier observations. Our algorithm first calculates 
logarithm of probability and than converts it into linear 
probability, threshold is set as logarithmic value. Minimal 
value for threshold is –250 because it is the smallest value 
for log probability. See fig. 3. 

Second modification of ML train algorithm supposes 
that K-means algorithm finds optimal number of mixtures 
per state, so that number is fixed. To achieve that, mixtures 
weights, which are smaller than minimum weight, are set to 
minimum weight. Fig. 5 presents performances of this sys-
tem for different values of outlier threshold. 

Fig. 3. Relationship between threshold value and percent of removed 
outliers 

Fig. 4. Relationship between WER and threshold value after one step of 
ML train with removing outliers 

Fig. 5. Relationship between WER and threshold after one step ML train 
whit flooring small mixture weights and removing outliers. 

We observed performance in smaller number of points 
then in the first variant, thus training procedure takes sev-
eral hours and we already know trend between threshold 
and WER.  This increasing of WER for threshold value –
2.3 is the reason why we stop on that threshold value, al-
though the percent of outliers in K-means is 3%. This raise 
of WER is indication that frames, which are not outliers, 
are expelled from estimation. 
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TABLE I : RESULTS FOR ML TRAIN WITHOUT REMOVING OUTLIERS
It

er
at

io
n 

WER 
[%] 

number of 
false 

recognitions 

number of 
insertions 

number 
of dele-

tions 

0 22.73 129 53 41 
1 24.06 135 43 58 
2 24.57 135 32 74 
3 24.97 140 36 69 
4 24.36 139 38 62 
5 24.36 139 37 63 

TABLE II : RESULTS FOR ML TRAIN WITH OUTLIER THRESHOLD SET 

ON -5 

It
er

at
io

n 

WER 
[%] 

number of 
false 

recognitions 

number of 
insertions 

number 
of dele-

tions 

0 22.73 129 53 41 
1 21.00 132 58 16 
2 21.81 137 68 9 
3 22.53 140 73 8 
4 22.12 134 73 10 
5 21.30 128 71 10 

TABLE III : RESULTS FOR ML TRAIN WITHOUT REMOVING OUTLIERS 

BUT FLOORING SMALL MIXTURES

It
er

at
io

n 

WER 
[%] 

number of 
false 

recognitions 

number of 
insertions 

number 
of dele-

tions 

0 22.73 129 53 41 
1 20.28 117 36 46 
2 19.16 102 29 57 
3 21.92 91 26 98 
4 19.88 89 26 80 
5 18.55 95 27 60 

TABLE IV : RESULTS FOR ML TRAIN WITH OUTLIER THRESHOLD SET 

ON -5 AND FLOORING SMALL MIXTURES

It
er

at
io

n 

WER 
[%] 

number of 
false 

recognitions 

number of 
insertions 

number 
of dele-

tions 

0 22.73 129 53 41 
1 20.08 126 60 11 
2 20.39 122 71 7 
3 19.37 113 70 7 
4 18.04 102 69 6 
5 18.14 101 72 5 

After we had found optimal outlier threshold, we started 
iterative ML train procedure in several variants: 

• ML train without removing outliers and its per-
formances are tabulated in Table I. 

• ML train with outlier threshold set on -5 and its per-
formances are tabulated in Table II. 

• ML train without removing outliers but flooring 

small mixtures. Its performances are tabulated in 
Table III. 

• ML train with outlier threshold set on -5 and floor-
ing small mixtures. Its performances are shown in 
Table IV. 

The reason why we have continued to experiment on 
first variant, although it obtains degradation of perform-
ances (WER is 24.06%), is that this variant is based on 
unmodified ML train algorithm formulas.  

First row (after zero iterations) represents performances 
of models, generated by K-means algorithm. 

Including outliers in model re-estimation seriously de-
grades ML train procedure. Models generated by pure ML 
train algorithm have worse performances than initial ones 
(see Table I). Comparing results in tables II and III leads 
us to conclusion that outliers seriously degrade mixture 
weights. At this moment, we cannot explain the reason. 

Even if increasing in average metric after each iteration 
step is achieved, WER has not constant decreasing. This is 
not a case for fourth variant of ML train. 

When we made an error, we obtained interesting result. 
If during calculation of state probability in Viterbi algo-
rithm, instead 

( ) ( )�
=

′−−
−=

M

m jm

jmjm
N

jm

jm
j

ooc
ob

1
22/2

}
))((

5.0exp{
2 σ

μμ

πσ
used 

( ) ( )�
=

′−−
−=

M

m jm

jmjm
N

jm

jm
j

ooc
ob

1
22/2

}
))((

exp{
2 σ

μμ

πσ
achieved performances were better. For models generated 
by K-means algorithm WER is 14.57%, but for models 
obtained after ML train iterations, the lowest WER is 
15.49%. 

VII. CONCLUSION

In this paper, we present our results with ML train algo-
rithm. We found out that outliers are a big problem and 
further examination will be concentrated on recognizing 
outliers in ML train. We will also try to find the reason 
why the incorrect evaluation of state probability leads to 
better performances. 
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